Informacje, przykłady obliczeń oraz zadania do samodzielnego rozwiązania można znaleźć w Rozdziale 5. "Reakcje i obliczenia chemiczne" e-Podręcznika AGH "Chemia ogólna". Nazewnictwo związków nieorganicznych w Rozdziale 3. "Klasyfikacja chemicznych związków nieorganicznych i ich nomenklatura" e-Podręcznika AGH "Chemia ogólna". Portal Wordwall umożliwia szybkie i łatwe tworzenie wspaniałych materiałów dydaktycznych. Wybierz szablon. Wprowadź elementy. Pobierz zestaw ćwiczeń interaktywnych i do wydruku. Dowiedz się więcej. Naczynia - właściwości fizyczne a chemiczne - naczynia - Naczynia - Naczynia - Naczynia - naczynia - naczynia - naczynia - NACZYNIA Chemia-wiązania chemiczne . 270. Udostępnij. Zapisz. Zarejestruj się, aby zobaczyć zawartość. To nic nie kosztuje! podstawowe informacje i przykłady. 5 wiązania chemiczne. występują w obrębie cząsteczki pierwiastka lub związku chemicznego, gdzie łączą się ze sobą atomy wchodzące w jej skład. wiązanie kowalencyjne. uwspólnienie elektronów należących do atomów tworzących cząsteczkę. Para elektronowa tworząca wiązanie należy w jednakowym stopniu do obu atomów, ponieważ Matura Maj 2019, Poziom Podstawowy (Arkusze CKE), Formuła od 2005 - Zadanie 5. (2 pkt) Narysuj wzór (strukturalny, półstrukturalny, taflowy, Fischera itd.) Określ rodzaj wiązania występującego w cząsteczce azotu (jonowe, kowalencyjne niespolaryzowane, kowalencyjne spolaryzowane) i narysuj wzór elektronowy dwuatomowej cząsteczki azotu Vay Tiền Trả Góp Theo Tháng Chỉ Cần Cmnd Hỗ Trợ Nợ Xấu. Zadanie 1. W teorii orbitali molekularnych powstawanie wiązań chemicznych typu σ lub π wyjaśnia się, stosując do opisu tych wiązań orbitale cząsteczkowe odpowiedniego typu (σ lub π), które można utworzyć w wyniku właściwego nakładania odpowiednich orbitali atomowych atomów tworzących cząsteczkę. Na poniższych schematach zilustrowano powstawanie orbitali podstawie: Lautenschläger, W. Schröter, A. Wanninger, Nowoczesne kompendium chemii, Warszawa 2007, s. 111– są cząsteczki: Cl2, H2, nakładanie jakich orbitali atomowych (s czy p) obu atomów należy koniecznie uwzględnić, aby wyjaśnić tworzenie wiązań w cząsteczkach o podanych powyżej wzorach. W tym celu przyporządkuj każdemu wzorowi odpowiedni numer schematu. Drobiny chemiczne występują w postaci atomowej – niezwiązanej lub w postaci związanej z innymi lub jednoimiennymi. Dziś pomówimy o wiązaniach chemicznych – wiązaniu kowalencyjnym (spolaryzowanym i nie), jonowym i metalicznym, a więc także o drobinach, które mają zdolność je tworzyć i o wynikających z rodzajów wiązań właściwościach cząsteczek lub związków. Wiązanie chemiczne Warunkiem do utworzenia wiązania chemicznego przez atomy pierwiastków chemicznych jest posiadanie elektronów którymi dany atom chciałby się podzielić z innym, oddać je lub z drugiej strony być chętnym, aby jakieś przyjąć. Wiemy już od gimnazjum, że swój wymarzony stan optymalny energetycznie w układzie okresowym osiągnęły jedynie gazy szlachetne. Mają tyle elektronów ile im potrzeba, to znaczy odpowiednio do swojej ostatniej powłoki elektronowej osiągnęły dublet lub oktet elektronowy. Reszta pierwiastków dążąc do takiego stanu tworzy wiązania i wspólnymi siłami atomy tworzą dublety i oktety. Wiązanie kowalencyjne (atomowe) niespolaryzowane Pierwszy rodzaj wiązania dotyczy dwóch atomów które różnią się nieznacznie elektroujemnością w skali Paulinga. Widełkami którymi możemy się sugerować przy określaniu wiązania jest różnica w granicach 0 – 0,4 (elektroujemność każdego pierwiastka w skali Paulinga znajdziemy w układzie okresowym, a kilka słów o niej pojawi się jeszcze w tym artykule). W wiązaniu tym dochodzi do sparowania elektronów dwóch atomów pierwiastków i ich uwspólnienia. Elektrony tworzące wiązanie w tym przypadku są przyciągane przez każde z jąder atomu z taką samą siłą. Jądra możemy wyobrazić sobie jako dwa magnesy, każdy od takiej samej zdolności do przyciągania elektronów. W takim przypadku uwspólniona para znajduje się między dwoma atomami – żaden z nich nie jest w stanie przyciągnąć elektronów do siebie: Zerknijmy na przykład tworzenia wiązania o którym mówimy przez dwa atomy tego samego pierwiastka (stąd wiemy, że różnica elektroujemności będzie 0). Gdybyśmy przeprowadzili linię od środka jednego jądra atomu do środka drugiego, para elektronowa tworząca wiązania byłaby dokładnie w połowie tej linii. To zasadnicza różnica między kolejnym rodzajem wiązań. Wiązanie kowalencyjne (atomowe) spolaryzowane Jak już zostało wspomniane w przykładzie powyżej zasadniczą różnicą między wiązaniami spolaryzowanym i niespolaryzowanym, będzie to czy elektrony tworzące dane wiązanie są przyciągane do obu jąder atomów tworzących to wiązanie z taką samą siłą i będą znajdować się w połowie między nimi (wiązanie kowalencyjne niespolaryzowane), czy któryś z atomów będzie przyciągał je silniej i znajdą się bliżej jego jądra (wiązanie kowalencyjne spolaryzowane). Wtedy właśnie mówimy o polaryzacji wiązania. Kiedy ma miejsce zjawisko polaryzacji? Wtedy, gdy atomy tworzące wiązanie różnią się znacznie elektroujemnością (powyżej 0,4 w skali Paulinga). Należy się teraz zastanowić, w którym kierunku zostanie przesunięta para elektronów. Tu z pomocą przyjdzie nam wspominana elektroujemność. Elektroujemność to siła, z jaką atom danego pierwiastka przyciąga do siebie elektrony. Elektrony tworzące wiązanie kowalencyjne spolaryzowane będą zatem przyciągane mocniej przez atomy pierwiastków o wyższej elektroujemności i będą się znajdować bliżej nich. To właśnie jest polaryzacja wiązania w stronę atomu chętniej przyciągającego elektrony. Klasycznym przykładem takiego wiązania jest wiązanie między atomami tlenu i wodoru w cząsteczka wody. Strzałki wskazują kierunek polaryzacji (przesunięcia elektronów). Wiązania tej cząsteczki są spolaryzowane, a dodatkowo cząsteczka jest również polarna. Polaryzacja wiązania a polarność cząsteczki Ważne jednak, by nie mylić tych dwóch pojęć tj.: polarności wiązania z polarnością całej cząsteczki. Nie wszystkie cząsteczki tworzące wiązania spolaryzowane są cząsteczkami polarnymi. By wiedzieć, czy cząsteczka jest polarna musimy się zastanowić czy jesteśmy w stanie wyznaczyć region w którym cząsteczka ma ładunek dodatni i taki w którym ładunek jest ujemny oraz jedną klarowną granicę między przeciwnymi biegunami. Zestawmy więc ze sobą wodę i tetrachlorometan. Widzimy więc teraz cząsteczki w których mamy wiązania kowalencyjne spolaryzowane. Ale tylko cząsteczka wody jest polarna. Dlaczego? Atom tlenu przyciąga do siebie dwie pary elektronowe, więc mamy przy nim cząstkowy ładunek ujemny, a przy atomach wodoru cząstkowy ładunek dodatni. W tym przypadku bez problemu można wyznaczyć jasną granicę między biegunem dodatnim i ujemnym. Cząsteczka jest więc polarna, tworzy się tzw. dipol. W przypadku tetrachlorometanu posiadamy cztery wiązania spolaryzowane. Jednak nie jest to cząsteczka polarna. Nie da jej się podzielić na jeden region naładowany ujemnie i jeden dodatnio, czy też wyznaczyć granicy pomiędzy nimi. Wyobraźmy sobie, że rozgrywają się tu dwie równoległe konkurencje przeciągania liny: jeden między atomami chloru po prawej i po lewej, a jeden między atomami chloru u góry i u dołu (pamiętajmy jednak, że nie jest to faktyczny wygląd cząsteczki w przestrzeni). W każdym tym pojedynku atomy chloru ciągną uwspólnione z atomem węgla elektrony z taką samą siłą do siebie i wzajemnie się równoważą. Nie ma tutaj “silniejszego” atomu chloru. Dlatego też nie jest to cząsteczka polarna. Wiązanie koordynacyjne – szczególny przypadek wiązania kowalencyjnego spolaryzowanego Wiązanie koordynacyjne (zwane również akceptorowo-donorowym) stanowi osobny punkt artykułu, ponieważ jest dość specyficzne. Tak jak mówi nagłówek, wiązanie koordynacyjne jest wiązaniem kowalencyjnym. Maturzyści często popełniają błąd przy jego opisie, dlatego warto zwrócić na nie szczególną uwagę. Teraz skupimy się nad jego istotą. W wymienianych dotąd rodzajach połączeń podstawą wiązania były elektrony pochodzące od dwóch atomów i były one uwspólniane. Wiązanie koordynacyjne natomiast tworzone jest przez parę elektronową jednego atomu. Warunkiem utworzenia takiego wiązania jest obecność dwóch atomów w zupełnie odmiennych sytuacjach: z jednej strony „bogatszy” atom pierwiastka posiadający wolną parę elektronową którą może się podzielić – zostaje donorem (dawcą) z drugiej strony „biedniejszy” atom pierwiastka posiadający lukę elektronową i z chęcią przyjmujący elektrony – zostaje akceptorem Para elektronowa tworząca to wiązanie jest również (tak jak w innych wiązaniach kowalencyjnych) wspólna, tak samo dla donora jak i akceptora. W poniższym przykładzie donorem jest atom azotu z amoniaku (NH3), a akceptorem jest jon wodorowy (H+): We wzorach kreskowych, wiązanie takie oznaczamy strzałką zwróconą w kierunku akceptora elektronów. Zwróć uwagę, że we wzorze elektronowym nie mamy już wolnej pary elektronowej na atomie azotu. Podobnie jak w innych wiązaniach kowalencyjnych, strzałka oznacza już uwspólnioną parę elektronów. Wiązanie jonowe Kolejnym sposobem na uzyskanie swojego celu w postaci oktetu bądź dubletu jaki podejmują drobiny chemiczne jest wiązanie jonowe. Występuje ono między pierwiastkami których różnice elektroujemności są spore. Przyjmuje się, że granicą jest różnica wynosząca 1,7. I tutaj zatrzymajmy się na chwilę. Jako, że liczba ta jest uważana za górną granicę różnicy elektroujemności wiązań kowalencyjnych spolaryzowanych i dolną jonowych należy wyjaśnić, że granica ta jest umowna. Jest to podejście typowo maturalne. Wg podstawy programowej musimy umieć określić rodzaj wiązania na podstawie różnicy elektroujemności i liczby elektronów walencyjnych atomów łączących się pierwiastków. Istnieją jednak związki, w których jest ona przekroczona, a występuje w nich wiązanie kowalencyjne spolaryzowane: np. fluorowodór; jak również związki, w których między atomami różnica elektroujemności jest mniejsza, a tworzą wiązania jonowe np. wodorki metali. Warto o tym pamiętać. Jaka jest różnica między wiązaniem jonowym a wiązaniem kowalencyjnym? Teraz możemy zająć się tym, czym tak naprawdę jest wiązanie jonowe. Do tej pory mówiąc o tworzeniu wiązania użytym słowem było uwspólnienie (pary elektronowej). W wiązaniu jonowym sytuacja jest zgoła odmienna. Jedna z drobin w celu uzyskania dubletu bądź oktetu pozbywa się elektronów i staję się naładowana dodatnie, mówiąc inaczej: staję się jonem dodatnim – kationem. Druga natomiast przejmuje elektrony oddane przez pierwszą i staje się naładowana ujemnie, czyli staje się jonem ujemnym – anionem. Nie ma tu mowy o czymś wspólnym. Obie te cząstki są teraz „szczęśliwe” ponieważ uzyskały stan optymalny energetycznie. Kationy i aniony jako cząsteczki o przeciwnych ładunkach, przyciągają się wzajemnie poprzez oddziaływania elektrostatyczne, tworząc w ten sposób wiązanie jonowe. Poniżej przykład budowy prostej soli. Jak możesz zauważyć w przykładzie, w przypadku wiązania jonowego, właściwie nie możemy mówić o cząsteczkach. Związki te tak naprawdę tworzą sieci krystaliczne, w których aniony i kationy oddziałują na siebie elektrostatycznie. Wiązanie metaliczne O tym rodzaju wiązań mówi się najmniej, jednak są one istotne, dlatego warto powiedzieć o nich kilka słów. Metale również tworzą sieć, jednak jej podstawą są rdzenie atomowe, a między nimi swobodnie poruszają się elektrony walencyjne tych metali. Swobodny przepływ elektronów w takiej sieci odpowiada za przewodnictwo elektryczne metali. Najważniejsze właściwości, które wynikają z poszczególnych rodzajów wiązań Często, szczególnie w zadaniach maturalnych poleceniem w zadaniu jest określić rodzaj wiązania na podstawie właściwości danego związku czy cząsteczki. Każdy rodzaj wiązania niesie za sobą pewne cechy charakterystyczne. Poniżej najważniejsze z nich: wiązania kowalencyjne: niska temperatura wrzenia i topnienia, słabe mechanicznie, izolatory elektryczne (wyjątkiem jest tutaj grafit) wiązania jonowe: wysoka temperatura wrzenia i topnienia, wytrzymałość mechaniczna, przewodzenie prądu elektrycznego po stopieniu lub rozpuszczeniu w wodzie wiązania metaliczne: zmienne temperatury topnienia i wytrzymałość mechaniczna, ciągliwość, przewodzenie prądu elektrycznego Na koniec ważna uwaga: w przypadku tego typu zadań, jak i generalnie przy określaniu rodzaju wiązania, powinniśmy się zdecydowanie mocniej skupić na właściwościach związku, niż na różnicach elektroujemności. Różnica elektroujemności powinna być wykorzystywana w zadaniach maturalnych, kiedy nie jest dostępna żadna inna informacja. ​ ​ Chcesz wiedzieć więcej? Polecam swoje lekcje online – w module “wiązania chemiczne” omawiam: istotę poszczególnych wiązań chemicznych i ich wpływ na właściwości, pisanie wzorów elektronowych, oddziaływania międzycząsteczkowe. Lekcja składa się z teorii i zadań maturalnych. Sprawdź tutaj. Wszystkie kursy znajdziesz na mojej platformie do nauki online: Mogą Cię zainteresować również: Strona głównaZadania maturalne z chemii Oto lista zadań maturalnych z danego działu chemii. Aby skorzystać z dodatkowych opcji lub wybrać zadania z pozostałych działów kliknij poniżej. Przejdź do wyszukiwarki zadań Matura Maj 2022, Poziom rozszerzony (Formuła 2015) - Zadanie 3. (3 pkt) Rodzaje wiązań i ich właściwości Sole Napisz równanie reakcji Narysuj/zapisz wzór Podaj i uzasadnij/wyjaśnij Bor tworzy z chlorem związek o wzorze BCl3, występujący w postaci płaskich trójkątnych cząsteczek. Te cząsteczki mogą łączyć się z innymi drobinami zawierającymi wolne pary elektronowe. Chlorek boru reaguje z wodą i podczas tej reakcji tworzą się H3BO3 (kwas ortoborowy) oraz HCl. Na podstawie: A. Bielański, Podstawy chemii nieorganicznej, Warszawa 2004. (0–1) Narysuj wzór elektronowy chlorku boru. Uwzględnij wolne pary elektronowe. (0–1) Spośród wymienionych drobin: wybierz te, które mogą łączyć się z chlorkiem boru, i napisz ich wzory. Wyjaśnij, dlaczego cząsteczki chlorku boru mają zdolność do tworzenia wiązań z tymi drobinami. Odwołaj się do struktury elektronowej cząsteczek chlorku boru. Z chlorkiem boru mogą łączyć się: Cząsteczki chlorku boru mają zdolność do tworzenia wiązań z wybranymi drobinami, ponieważ (0–1) Napisz w formie cząsteczkowej równanie reakcji chlorku boru z wodą. Matura Lipiec 2020, Poziom rozszerzony (Formuła 2015) - Zadanie 3. (1 pkt) Rodzaje wiązań i ich właściwości Zamknięte (np. testowe, prawda/fałsz) Na poniższym wykresie przedstawiono, jak zmienia się energia potencjalna cząsteczek metanu w zależności od dzielącej je odległości (linia ciągła oznaczona numerem 1). Uzupełnij poniższe zdania. Wybierz i zaznacz jedną odpowiedź spośród podanych w każdym nawiasie. W miarę zbliżania się do siebie cząsteczek metanu siły przyciągania van der Waalsa rosną, co skutkuje spadkiem energii potencjalnej cząsteczek zilustrowanym krzywą oznaczoną numerem (2 / 3). Jednocześnie w miarę zbliżania się do siebie cząsteczek metanu siły odpychania między jądrami atomowymi i siły odpychania między elektronami dwóch cząsteczek (rosną / maleją). Najbardziej korzystny energetycznie dla cząsteczek metanu jest stan, w którym odległość między nimi jest (mniejsza niż r0 / równa r0 / większa od r0). Matura Czerwiec 2021, Poziom rozszerzony (Formuła 2015) - Zadanie 4. (2 pkt) Rodzaje wiązań i ich właściwości Hybrydyzacja orbitali i kształt cząsteczek Zamknięte (np. testowe, prawda/fałsz) Fosforowodór PH3 to związek o temperaturze topnienia równej −133°C i temperaturze wrzenia równej −88°C (pod ciśnieniem atmosferycznym). W skroplonym fosforowodorze oddziaływania międzycząsteczkowe są dużo słabsze niż w skroplonym amoniaku. Na podstawie: L. Kolditz (red.), Chemia nieorganiczna, Warszawa 1994. (0–1) Na podstawie różnicy elektroujemności między fosforem a wodorem oraz informacji wprowadzającej uzupełnij poniższe zdania. Wybierz i zaznacz jedną odpowiedź spośród podanych w każdym nawiasie. Cząsteczka fosforowodoru PH3 ma kształt (trójkąta równobocznego / liniowy / piramidy o podstawie trójkąta). Wiązanie w PH3 ma charakter (jonowy / kowalencyjny). (0–1) Uzupełnij poniższe zdania. Wybierz i zaznacz jedną odpowiedź spośród podanych w każdym nawiasie. Temperatura wrzenia skroplonego amoniaku jest (wyższa / niższa) niż temperatura wrzenia fosforowodoru. Bardzo dobra rozpuszczalność (fosforowodoru / amoniaku) w wodzie jest spowodowana silnym oddziaływaniem między cząsteczkami tego związku a cząsteczkami wody i tworzeniem się między nimi wiązań wodorowych. Informator CKE, Poziom rozszerzony (Formuła 2023) - Zadanie 54. (3 pkt) Rodzaje wiązań i ich właściwości Metale Podaj i uzasadnij/wyjaśnij Jakość gleb zależy od zawartości tzw. próchnicy, stanowiącej mieszaninę związków chemicznych pochodzących z rozkładu szczątków organicznych. Sposób określenia w przybliżeniu zawartości próchnicy w glebie polega na ilościowym utlenieniu związków organicznych, których głównym składnikiem jest węgiel. Utlenianie węgla zawartego w związkach organicznych można przeprowadzić za pomocą dichromianu(VI) potasu, w środowisku kwasu siarkowego(VI) z dodatkiem siarczanu(VI) rtęci(II) jako katalizatora (reakcja 1.), co w uproszczeniu można zilustrować równaniem: 3C + 2K2Cr2O7 + 8H2SO4 T, … katalizator 3CO2 + 2K2SO4 + 2Cr2(SO4)3 + 8H2O W tej metodzie stosuje się nadmiar dichromianu(VI), a następnie – w obecności wskaźnika – utleniacz dodany w nadmiarze poddaje się reakcji z jonami żelaza Fe2+ jako reduktorem (reakcja 2.). 6Fe2+ + Cr2O2−7 + 14H+ → 6Fe3+ + 2Cr3+ + 7H2O Jest to tzw. miareczkowanie reduktometryczne, podczas którego roztwór soli żelaza(II) o znanym stężeniu znajduje się w biurecie. Ten roztwór dodaje się stopniowo do kolby z utleniaczem i na końcu dokładnie odczytuje, jaka jego objętość została zużyta w reakcji. Przed rozpoczęciem miareczkowania wprowadza się do kolby kilka kropel wodnego roztworu wskaźnika, którym jest o-fenantrolina (1,10-fenantrolina) przedstawiona wzorem 1. Sam ten wskaźnik jest bezbarwny, ale tworzy z jonami żelaza Fe2+ kompleks (wzór 2.) o intensywnej czerwonej barwie. (0–1) Podpunkt anulowany przez CKE Wyjaśnij na podstawie struktury o‑fenantroliny, dlaczego może ona, podobnie jak amoniak, pełnić funkcję ligandu w jonie kompleksowym. (0–2) Przyporządkuj kolby z roztworami (I–III) do kolejnych etapów miareczkowania jonów dichromianowych(VI) jonami żelaza(II) w obecności o‑fenantroliny. Odpowiedź uzasadnij. Przed rozpoczęciem miareczkowania – kolba Uzasadnienie: Podczas dodawania roztworu soli żelaza(II) – kolba Uzasadnienie: W punkcie końcowym miareczkowania – kolba Uzasadnienie: Informator CKE, Poziom rozszerzony (Formuła 2023) - Zadanie 24. (2 pkt) Rodzaje wiązań i ich właściwości Związki nieorganiczne – ogólne Napisz równanie reakcji Zamknięte (np. testowe, prawda/fałsz) Azotki to grupa związków chemicznych o zróżnicowanej budowie i właściwościach, w której atomom azotu przypisuje się stopień utlenienia równy –III. Niżej opisano wybrane właściwości dwóch azotków. Azotek litu, Li3 N, w temperaturze T = 298 K i pod ciśnieniem p = 1000 hPa jest krystalicznym ciałem stałym, o wysokiej temperaturze topnienia. Po stopieniu azotek litu przewodzi prąd elektryczny. Azotek litu otrzymuje się w reakcji syntezy z pierwiastków. Jest substancją higroskopijną, a w kontakcie z wodą rozkłada się z wydzieleniem amoniaku. Roztwór po reakcji azotku litu z wodą i usunięciu amoniaku z roztworu ma pH > 7. Li3N reaguje też z wodnymi roztworami kwasów. Azotek boru, BN, to w temperaturze T = 298 K i pod ciśnieniem p = 1000 hPa krystaliczne, bezbarwne ciało stałe, o bardzo wysokiej temperaturze topnienia, występujące w kilku odmianach polimorficznych. Stopiony azotek boru nie przewodzi prądu elektrycznego. Zależnie od rodzaju odmiany polimorficznej wykazuje zróżnicowaną twardość od twardości zbliżonej do twardości grafitu aż do twardości diamentu. Otrzymuje się go wieloma metodami, a jedną z nich jest reakcja mocznika, CO(NH2)2, z tlenkiem boru, B2O3, w temperaturze 1000°C, przy czym produktami ubocznymi są para wodna i tlenek węgla(IV). Na podstawie: P. Patnaik, Handbook of Inorganic Chemicals, McGraw-Hill, 2002. (0–1) Podpunkt anulowany przez CKE Uzupełnij poniższe zdanie. Wybierz i zaznacz jedną odpowiedź spośród podanych w każdym nawiasie. Azotek litu tworzy kryształy (jonowe / kowalencyjne / metaliczne), a azotek boru tworzy kryształy (jonowe / kowalencyjne / metaliczne). (0–1) Napisz równanie syntezy azotku litu z pierwiastków i równanie reakcji otrzymywania azotku boru z mocznika i tlenku boru. Równanie syntezy azotku litu: Równanie reakcji otrzymywania azotku boru: Informator CKE, Poziom rozszerzony (Formuła 2023) - Zadanie 3. (1 pkt) Rodzaje wiązań i ich właściwości Zamknięte (np. testowe, prawda/fałsz) Tlenek krzemu (SiO2), nazywany potocznie krzemionką, jest bardzo rozpowszechniony w przyrodzie. Czysta krzemionka występuje w postaci krystalicznej, np. jako minerał kwarc. Poniżej przedstawiono zdjęcie kryształów kwarcu oraz model jego struktury krystalicznej. Dokończ zdanie. Zaznacz odpowiedź spośród A–D i jej uzasadnienie spośród 1.–4. Kwarc można zaliczyć do kryształów A. metalicznych, ponieważ 1. składa się z cząsteczek SiO2 połączonych oddziaływaniami międzycząsteczkowymi. B. jonowych, 2. jego strukturę tworzą rdzenie atomowe otoczone wspólną „chmurą” elektronów zdelokalizowanych. C. kowalencyjnych, 3. jest zbudowany z anionów tlenkowych (O2–) i kationów krzemu (Si4+). D. molekularnych, 4. jest zbudowany z atomów połączonych wiązaniami kowalencyjnymi spolaryzowanymi. Matura Maj 2021, Poziom rozszerzony (Formuła 2015) - Zadanie 32. (1 pkt) Rodzaje wiązań i ich właściwości Zamknięte (np. testowe, prawda/fałsz) Cząsteczki kwasu etanowego mogą tworzyć dimer: Dimer ten występuje w stanie gazowym oraz w roztworach kwasu etanowego w rozpuszczalnikach nietworzących z nim wiązań wodorowych. Uzupełnij poniższe zdania. Wybierz i podkreśl jedną odpowiedź spośród podanych w każdym nawiasie. Przedstawiony w informacji dimer powstaje w wyniku tworzenia się wiązań (kowalencyjnych / jonowych / wodorowych) między cząsteczkami kwasu etanowego. Rozcieńczony roztwór kwasu etanowego w wodzie (nie zawiera dimerów / zawiera dimery), ponieważ woda (nie tworzy wiązań wodorowych / tworzy wiązania wodorowe) z cząsteczkami kwasu etanowego. Matura Maj 2021, Poziom rozszerzony (Formuła 2015) - Zadanie 3. (1 pkt) Rodzaje wiązań i ich właściwości Zamknięte (np. testowe, prawda/fałsz) Atomy fluorowców wykazują wyraźną tendencję do przyjęcia dodatkowego elektronu i przejścia w jon X– lub też – gdy różnica elektroujemności fluorowca i łączącego się z nim pierwiastka jest mała – do utworzenia wiązania kowalencyjnego. W szczególnych warunkach może nastąpić oderwanie elektronu od obojętnego atomu fluorowca i utworzenie jonu X+. Na podstawie: A. Bielański, Podstawy chemii nieorganicznej, Warszawa 2004. Spośród wymienionych poniżej substancji wybierz te, w skład których wchodzą jony Cl–. Podkreśl wzory wybranych związków. HCl (g) KCl (s) CH3Cl (g) CH3NH3Cl (s) NaClO (s) CaCl2 · 6H2O (s) Zbiór zadań CKE, Poziom rozszerzony (Formuła 2015) - Zadanie 36. (3 pkt) Prawo stałości składu, ustalanie wzoru Rodzaje wiązań i ich właściwości Hybrydyzacja orbitali i kształt cząsteczek Podaj/wymień Dwa pierwiastki X i Y tworzą związek chemiczny, w którego cząsteczkach atom pierwiastka X jest atomem centralnym, a wszystkie połączone z nim atomy pierwiastka Y są równocenne. Pierwiastek X znajduje się w 13. grupie układu okresowego pierwiastków chemicznych, w rdzeniu atomowym ma 2 elektrony. Pierwiastek Y znajduje się w 3. okresie i jego atom tworzy trwały jon prosty o wzorze Y−. a)Napisz wzór sumaryczny związku pierwiastka X i Y, podaj typ hybrydyzacji (sp, sp2, sp3) atomu pierwiastka X w cząsteczce tego związku oraz określ budowę przestrzenną (liniowa, trójkątna, tetraedryczna) tej cząsteczki. Wzór sumaryczny: Typ hybrydyzacji: Budowa przestrzenna: b)Określ charakter wiązania chemicznego (jonowe, kowalencyjne niespolaryzowane, kowalencyjne spolaryzowane) występującego w opisanym związku. c)Określ stosunek masowy i stosunek molowy pierwiastka X do pierwiastka Y w opisanym związku chemicznym. Zbiór zadań CKE, Poziom rozszerzony (Formuła 2015) - Zadanie 35. (3 pkt) Rodzaje wiązań i ich właściwości Węglowodory - ogólne Napisz równanie reakcji Podaj/zinterpretuj przebieg reakcji Zamknięte (np. testowe, prawda/fałsz) Na rysunkach przedstawiono przestrzenne rozmieszczenie wiązań chemicznych tworzonych przez orbitale zhybrydyzowane atomów węgla w cząsteczkach dwóch węglowodorów. Punktami schematycznie oznaczono położenie środków atomów połączonych tymi wiązaniami, linią ciągłą – osie wiązań, a linią przerywaną – kontury figury geometrycznej, w której narożach znajdują się atomy otaczające atom centralny. Hybrydyzacja polegająca na wymieszaniu 1 orbitalu s oraz 3 orbitali p daje hybrydyzację tetraedryczną ze względu na skierowanie orbitali zhybrydyzowanych ku narożom tetraedru. Wymieszanie 1 orbitalu s oraz 2 orbitali p daje hybrydyzację trygonalną. Wiązania utworzone za pomocą tych orbitali leżą w tej samej płaszczyźnie, a kąty pomiędzy nimi wynoszą 120°. Na podstawie: A. Bielański, Podstawy chemii nieorganicznej, Warszawa 2011, s. 151, 152, 155,156. a)Spośród odczynników wymienionych poniżej wybierz wszystkie te, które pozwolą na odróżnienie węglowodoru o strukturze przestrzennej przedstawionej na rysunku I od węglowodoru o strukturze przedstawionej na rysunku II. Br2 (aq), KMnO4 (aq), świeżo wytrącony Cu(OH)2, KOH (aq) i roztwór fenoloftaleiny b)Napisz, jakie zmiany możliwe do zaobserwowania podczas reakcji każdego wybranego odczynnika z węglowodorami o strukturach przedstawionych na rysunkach I i II, pozwalają na odróżnienie tych węglowodorów. c)Uzasadnij swój wybór odczynników, pisząc odpowiednie równania reakcji. Zbiór zadań CKE, Poziom rozszerzony (Formuła 2015) - Zadanie 34. (1 pkt) Rodzaje wiązań i ich właściwości Hybrydyzacja orbitali i kształt cząsteczek Zamknięte (np. testowe, prawda/fałsz) Na rysunkach przedstawiono przestrzenne rozmieszczenie wiązań chemicznych tworzonych przez orbitale zhybrydyzowane atomów węgla w cząsteczkach dwóch węglowodorów. Punktami schematycznie oznaczono położenie środków atomów połączonych tymi wiązaniami, linią ciągłą – osie wiązań, a linią przerywaną – kontury figury geometrycznej, w której narożach znajdują się atomy otaczające atom centralny. Hybrydyzacja polegająca na wymieszaniu 1 orbitalu s oraz 3 orbitali p daje hybrydyzację tetraedryczną ze względu na skierowanie orbitali zhybrydyzowanych ku narożom tetraedru. Wymieszanie 1 orbitalu s oraz 2 orbitali p daje hybrydyzację trygonalną. Wiązania utworzone za pomocą tych orbitali leżą w tej samej płaszczyźnie, a kąty pomiędzy nimi wynoszą 120°. Na podstawie: A. Bielański, Podstawy chemii nieorganicznej, Warszawa 2011, s. 151, 152, 155,156. Uzupełnij poniższe zdania. Wybierz i podkreśl jedno określenie spośród podanych w każdym nawiasie tak, aby zdania były prawdziwe. Rysunek I przedstawia przestrzenne rozmieszczenie wiązań chemicznych tworzonych przez orbitale zhybrydyzowane atomów węgla w cząsteczkach (metanu/etenu/etynu), a rysunek II – w cząsteczkach (metanu/etenu/etynu). W cząsteczce węglowodoru, której strukturę przedstawia rysunek I, (występuje/nie występuje) wiązanie typu π, dlatego węglowodór ten ulega reakcjom (substytucji/addycji) i (powoduje odbarwienie /nie powoduje odbarwienia) wody bromowej. Zbiór zadań CKE, Poziom rozszerzony (Formuła 2015) - Zadanie 24. (3 pkt) Elektrony w atomach, orbitale Rodzaje wiązań i ich właściwości Zamknięte (np. testowe, prawda/fałsz) Podaj/wymień Narysuj/zapisz wzór Poniżej przedstawiono konfigurację elektronową atomów w stanie podstawowym wybranych metali należących do 1. grupy układu okresowego pierwiastków. Metale te oznaczono numerami I, II i III. I: 1s22s1 II: 1s22s22p63s23p64s1 III: 1s22s22p63s1 Pierwsza energia jonizacji to energia, jaką należy dostarczyć, aby oderwać elektron od obojętnego atomu. a)Zaznacz poprawne dokończenie zdania. Najmniejszą pierwszą energię jonizacji ma atom pierwiastka oznaczonego numerem I, ponieważ jego elektron walencyjny jest najmniej oddalony od jądra atomowego. I, ponieważ ma obsadzone elektronami tylko dwie powłoki elektronowe. II, ponieważ jego elektron walencyjny jest najbardziej oddalony od jądra atomowego. III, ponieważ ma najmniejszą elektroujemność. b)Określ liczbę elektronów w rdzeniu atomu metalu oznaczonego numerem III. c)Napisz wzór sumaryczny związku metalu oznaczonego numerem II z chlorem i określ charakter wiązania chemicznego (jonowe, kowalencyjne niespolaryzowane, kowalencyjne spolaryzowane), które w tym związku występuje. Zbiór zadań CKE, Poziom rozszerzony (Formuła 2015) - Zadanie 12. (1 pkt) Rodzaje wiązań i ich właściwości Uzupełnij/narysuj wykres, schemat lub tabelę Dimetyloglioksym jest związkiem organicznym o następującym wzorze: Związek ten jest wykorzystywany w analizie chemicznej między innymi do wykrywania i określania ilości jonów niklu(II), z którymi tworzy trudno rozpuszczalny w wodzie osad dimetyloglioksymianu niklu(II) o różowym zabarwieniu. Reakcja ta przebiega zgodnie z równaniem: Na podstawie: J. Minczewski, Z. Marczenko, Chemia analityczna 2. Chemiczne metody analizy ilościowej, Warszawa 1998, s. 179–181. Uzupełnij tabelę. Określ liczbę wiązań typu σ i typu π w cząsteczce dimetyloglioksymu oraz liczbę wolnych par elektronowych przy atomach tworzących tę cząsteczkę. Liczba wiązań typu σ Liczba wiązań typu π Liczba wolnych par elektronowych Matura Czerwiec 2018, Poziom rozszerzony (Formuła 2015) - Zadanie 5. (2 pkt) Elektrony w atomach, orbitale Rodzaje wiązań i ich właściwości Narysuj/zapisz wzór Zamknięte (np. testowe, prawda/fałsz) Cząsteczka trichlorku fosforu o wzorze PCl3 ma budowę przestrzenną podobną do struktury cząsteczki amoniaku. (0–1) Określ charakter wiązania chemicznego (wiązanie kowalencyjne niespolaryzowane, kowalencyjne spolaryzowane) w cząsteczce trichlorku fosforu i napisz wzór elektronowy tej cząsteczki. Zaznacz kreskami wiążące i wolne pary elektronowe. Charakter wiązania: Wzór elektronowy: (0–1) Uzupełnij poniższe zdania – wybierz i podkreśl jedno właściwe określenie spośród podanych w każdym nawiasie. Orbitalom walencyjnym atomu centralnego w cząsteczce trichlorku fosforu przypisuje się hybrydyzację typu (sp / sp2 / sp3). Atom centralny (nie stanowi bieguna elektrycznego / stanowi biegun elektryczny dodatni / stanowi biegun elektryczny ujemny) w tej cząsteczce. Matura Czerwiec 2019, Poziom rozszerzony (Formuła 2007) - Zadanie 32. (1 pkt) Rodzaje wiązań i ich właściwości Hybrydyzacja orbitali i kształt cząsteczek Zamknięte (np. testowe, prawda/fałsz) Ubichinon Q10 (koenzym Q10) jest niezbędnym elementem łańcucha oddechowego. Zapobiega produkcji rodników, oksydacyjnym modyfikacjom białek, lipidów oraz DNA i pełni wiele innych funkcji w organizmie. Poniżej przedstawiono wzór opisujący strukturę cząsteczki ubichinonu Q10. Oceń, czy poniższe informacje są prawdziwe. Zaznacz P, jeśli informacja jest prawdziwa, albo F – jeśli jest fałszywa. 1. Cząsteczka ubichinonu Q10 o strukturze przedstawionej w informacji zawiera 14 wiązań π. P F 2. Cząsteczka ubichinonu Q10 o strukturze przedstawionej w informacji zawiera pierścień aromatyczny. P F 3. W łańcuchowym fragmencie cząsteczki ubichinonu Q10 o strukturze przedstawionej w informacji wszystkim atomom węgla można przypisać hybrydyzację sp2 P F Matura Czerwiec 2019, Poziom rozszerzony (Formuła 2007) - Zadanie 3. (1 pkt) Rodzaje wiązań i ich właściwości Uzupełnij/narysuj wykres, schemat lub tabelę Ustal i wpisz do tabeli, jaki rodzaj wiązania (kowalencyjne niespolaryzowane, kowalencyjne spolaryzowane, jonowe) występuje w cząsteczce NH3. Następnie przyporządkuj dwóm związkom: LiH i PH3, wartości ich temperatury topnienia: 692°C, –134°C (pod ciśnieniem 1013 hPa). Na podstawie: W. Mizerski, Tablice chemiczne, Warszawa 2003. LiH NH3 PH3 Rodzaj wiązania jonowe kowalencyjne niespolaryzowane Temperatura topnienia, °C –78 Matura Czerwiec 2019, Poziom rozszerzony (Formuła 2015) - Zadanie 26. (1 pkt) Rodzaje wiązań i ich właściwości Hybrydyzacja orbitali i kształt cząsteczek Zamknięte (np. testowe, prawda/fałsz) Ubichinon Q10 (koenzym Q10) jest niezbędnym elementem łańcucha oddechowego. Zapobiega produkcji rodników, oksydacyjnym modyfikacjom białek, lipidów oraz DNA i pełni wiele innych funkcji w organizmie. Poniżej przedstawiono wzór opisujący strukturę cząsteczki ubichinonu Q10. Oceń, czy poniższe informacje są prawdziwe. Zaznacz P, jeśli informacja jest prawdziwa, albo F – jeśli jest fałszywa. 1. Cząsteczka ubichinonu Q10 o strukturze przedstawionej w informacji zawiera 14 wiązań π. P F 2. Cząsteczka ubichinonu Q10 o strukturze przedstawionej w informacji zawiera pierścień aromatyczny. P F 3. W łańcuchowym fragmencie cząsteczki ubichinonu Q10 o strukturze przedstawionej w informacji wszystkim atomom węgla można przypisać hybrydyzację sp2 P F Matura Czerwiec 2019, Poziom rozszerzony (Formuła 2015) - Zadanie 2. (2 pkt) Rodzaje wiązań i ich właściwości Uzupełnij/narysuj wykres, schemat lub tabelę Ustal i wpisz do tabeli, jaki rodzaj wiązania (kowalencyjne niespolaryzowane, kowalencyjne spolaryzowane, jonowe) występuje w cząsteczce NH3. Następnie przyporządkuj dwóm związkom: LiH i PH3, wartości ich temperatury topnienia: 692°C, –134°C (pod ciśnieniem 1013 hPa). Na podstawie: W. Mizerski, Tablice chemiczne, Warszawa 2003. LiH NH3 PH3 Rodzaj wiązania jonowe kowalencyjneniespolaryzowane Temperatura topnienia, °C –78 Strony1 2 3 › » Uczeń właśnie poznał budowę atomu i sposób rozmieszczania elektronów na powłokach. Potrafi ustalić liczbę elektronów walencyjnych w atomie danego pierwiastka chemicznego. I wtedy pojawiają się one – wiązania chemiczne. Prawdziwe wyzwanie nie tylko dla uczniów, lecz także dla doświadczonych pedagogów. W jaki sposób przekazać abstrakcyjną wiedzę? Omawianie wiązań chemicznych po raz pierwszy wymaga stosowania pewnych uproszczeń, wynikających z trudności zagadnienia i wciąż jeszcze ograniczonej wiedzy uczniów w wielu obszarach chemii (oraz fizyki). Nauczyciel musi balansować między treścią, jaką należy wprowadzić zgodnie z podstawą programową, a zagadnieniami rozszerzającymi, których realizacja jest zaplanowana na kolejny etap kształcenia (liceum ogólnokształcące, technikum). Pedagog, jeśli wcześniej uczył w szkole ponadgimnazjalnej, powinien zrezygnować ze swoich przyzwyczajeń. Jaki bowiem skutek może przynieść zasypanie ucznia już na samym początku nauki chemii skomplikowaną wiedzą teoretyczną o wysokim stopniu abstrakcji, dotyczącą rzeczy niewidocznych gołym okiem? J. Kulawik, T. Kulawik, M. Litwin, Chemia Nowej Ery, podręcznik dla klasy 7, Warszawa 2017, s. 110. Czym dysponuje nauczyciel? Z pewnością wyobraźnią uczniów. I to właśnie do niej powinien się odwoływać. Może skorzystać na przykład z modeli do budowania cząsteczek, w których kulki łączy się krótszymi lub dłuższymi pręcikami. Uczniowie wkrótce dowiedzą się przecież, że pręciki odpowiadają kreskom, za których pomocą przedstawia się wiązania w kreskowych wzorach strukturalnych cząsteczek. Uczniom łatwiej przyswoić kreskę łączącą atomy, którą widzą we wzorach, niż zrozumieć oddziaływanie elektronów walencyjnych po dostatecznym zbliżeniu się atomów. Warto też posiłkować się uproszczonymi schematami powstawania wiązań chemicznych, odwołującymi się do różnych skojarzeń. To od nauczyciela zależy, czy sposób, w jaki uczniowie postrzegają wiązania chemiczne, będzie zgodny z prawdą naukową. Od czego zacząć? Warto skorzystać z tego, że pojęcie elektroujemności pojawiło się już w klasie siódmej szkoły podstawowej. Pozwala to na w miarę konkretne omówienie klasyfikacji wiązań chemicznych. Najlepiej od razu, na pierwszej lekcji poświęconej sposobom łączenia się atomów, wprowadzić pojęcia elektroujemności i różnicy elektroujemności jako nowego parametru, obliczanego na podstawie wartości elektroujemności, które uczeń może znaleźć w układzie okresowym pierwiastków chemicznych lub w odpowiednich tabelach. J. Kulawik, T. Kulawik, M. Litwin, Chemia Nowej Ery, podręcznik dla klasy 7, Warszawa 2017, s. 119. Jaką metodę zastosować? Dobrą metodą przedstawienia klucza do rozpoznania rodzaju wiązania chemicznego między atomami jest narysowanie osi, na której zaznaczymy przedziały formalne dla poszczególnych wiązań. Niezbędne punkty na osi to: 0 i 1,7. Następnie oś możemy opisać, podając rodzaj wiązania chemicznego, jego charakterystykę oraz przykłady cząsteczek lub kryształów, w których dane wiązanie występuje: wiązanie kowalencyjne pojawia się między atomami niemetali: – wiązanie kowalencyjne niespolaryzowane (atomowe) tworzy się między dwoma jednakowymi atomami, czyli przede wszystkim w cząsteczkach homoatomowych typu X2: H2, N2, O2, F2, Cl2, Br2, I2. Dla każdego z tych przykładów różnica elektroujemności jest równa 0, – wiązanie kowalencyjne spolaryzowane tworzy się w związkach binarnych – w cząsteczkach heteroatomowych, np.: HCl, H2O, NH3, CH4, CO2. Dla tych przykładów różnica elektroujemności jest większa od 0 i mniejsza od 1,7; wiązanie jonowe pojawia się między atomami metalu i niemetalu, np.: Na2O, KCl, MgO, LiBr. Wówczas różnica elektroujemności jest większa od ~ 1,7. J. Kulawik, T. Kulawik, M. Litwin, Chemia Nowej Ery, podręcznik dla klasy 7, Warszawa 2017, s. 127. Podkreślić czy pominąć wyjątki? Niestety rzeczywistość chemiczna jest bardziej skomplikowana niż przedstawiony wykres. W przypadku każdego wiązania chemicznego spotykamy wyjątki i przykłady niepasujące do podanych kryteriów. Dlaczego tak się dzieje? Po pierwsze: granice na osi nie są ostre i jednoznaczne (szczególnie ta między wiązaniem kowalencyjnym spolaryzowanym a wiązaniem jonowym), ale to od przykładów, na których omówimy poszczególne rodzaje wiązań, zależeć będzie użyteczność tej osi. Po drugie: niekiedy dolna granica przedziału wiązania kowalencyjnego spolaryzowanego (różnica elektroujemności równa 0,4) jest klasyfikowana do wiązania kowalencyjnego niespolaryzowanego (atomowego). Po trzecie: wiązania traktowane jako jonowe nigdy nie są w 100% jonowe, a jedynie mają przewagę charakteru jonowego nad kowalencyjnym. Podobnie wiązania kowalencyjne spolaryzowane zawsze zawierają pewien udział wiązania jonowego. Na rzeczywisty charakter wiązania ma wpływ wiele czynników, np. polaryzowalność chmur elektronowych, zdolności polaryzacyjne jonów, gęstość pola elektrycznego wokół zrębów atomowych. W przypadku fluorowodoru HF właśnie duża gęstość pola elektrycznego wokół zrębu atomowego H, czyli w tym przypadku protonu mającego wyjątkowo małe rozmiary, powoduje, że mimo wysokiej elektroujemności fluoru dochodzi do depolaryzacji wiązania, przez co uzyskuje ono charakter wiązania kowalencyjnego spolaryzowanego, a nie jonowego. Jednak szczegółowe tłumaczenie tego zjawiska, wymagające wprowadzenia wielu dodatkowych pojęć, nie wydaje się na tym etapie kształcenia celowe. Jak najbardziej wskazane jest natomiast dobieranie przykładów typowych i niebudzących kontrowersji. W klasie siódmej można jednak wspomnieć, że zagadnienie wiązań chemicznych zostanie dokładniej omówione w szkole ponadpodstawowej. J. Kulawik, T. Kulawik, M. Litwin, Chemia Nowej Ery, podręcznik dla klasy 7, Warszawa 2017, s. 112. Które przykłady nie potwierdzają reguł? Cząsteczki siarczku węgla(IV) CS2 lub fosforowodoru PH3 są zbudowane z różnych niemetali, a jednak różnica elektroujemności jest równa 0, przez co wiązania chemiczne w nich występujące zalicza się do kowalencyjnych niespolaryzowanych. Wodorek sodu NaH, mimo różnicy elektroujemności równej 1,2, wskazującej na wiązanie kowalencyjne spolaryzowane, jest związkiem jonowym (metal-niemetal). Innym przypadkiem jest fluorowodór HF, w którego cząsteczce różnica elektroujemności jest równa 1,9, a jednak klasyfikujemy go do związków kowalencyjnych, a nie jonowych. Chlorek glinu AlCl3 oraz siarczek glinu Al2S3 to również przykłady związków dość problematycznych, o specyficznej budowie. Są to sole i w klasie siódmej klasyfikuje się je do związków jonowych, choć różnica elektroujemności jest w nich mniejsza od 1,7. Pamiętajmy zatem, że w naturze reguły bez żadnych wyjątków są niezmiernie rzadkie. Jak nie dać się zapędzić w kozi róg? Już od początku nauki chemii warto podkreślać, że warunkami utworzenia wiązania kowalencyjnego niespolaryzowanego są zerowa różnica elektroujemności i obecność jednakowych atomów w cząsteczce. Tylko wtedy bowiem wiążąca para elektronowa znajduje się dokładnie pośrodku między atomami, co odpowiada wiązaniu kowalencyjnemu niespolaryzowanemu. Gdy tylko któryś z tych warunków przestaje być spełniany, para wiążąca przesuwa się bliżej jednego z dwóch atomów i wiązanie można zaliczyć do spolaryzowanych. Zatem przedział elektroujemności odpowiadający wiązaniu spolaryzowanemu nie wynosi <0,4–~1,7 (lewa granica przedziału z włączeniem wartości 0,4), a 0–~1,7 (lewa granica przedziału bez wartości zerowej). Niezerowa różnica elektroujemności powoduje przesunięcie wiążącej pary elektronowej w kierunku bardziej elektroujemnego atomu. Jeśli łączące się atomy są atomami różnych pierwiastków, to znaczy, że mają różne promienie kowalencyjne, nawet jeśli ich elektroujemności w skali Paulinga są jednakowe. W rezultacie wiążąca para elektronowa nie znajdzie się dokładnie pośrodku długości wiązania, co oznacza, że wiązanie będzie spolaryzowane. Sytuacja przypomina tu rachunek prawdopodobieństwa – można powiedzieć, że wydarzenie jest niemożliwe tylko wtedy, gdy jego prawdopodobieństwo jest równe dokładnie zeru. Gdy jest niezerowe, to choćby znikome, nie można stwierdzić, że to wydarzenie jest niemożliwe. J. Kulawik, T. Kulawik, M. Litwin, Chemia Nowej Ery, podręcznik dla klasy 7, Warszawa 2017, s. 127. Co mieć na względzie? Warto także pamiętać, że skala Paulinga nie jest jedyną skalą elektroujemności. Na przykład w skali Allreda-Rochowa wodór i fosfor nie mają jednakowej wartości elektroujemności! Zatem z punktu widzenia skali Allreda-Rochowa wiązanie kowalencyjne w cząsteczce fosforowodoru PH3 nie może być niespolaryzowane, ponieważ różnica elektroujemności jest równa 0,1. Jak wygląda typowe zadanie? Treść typowego zadania dotyczącego sposobu łączenia się atomów może być następująca: Ustal rodzaj wiązania chemicznego w substancjach o wzorach: a) Cl2, b) HBr, c) K2O. Rozwiązanie: a) Cl2 jest cząsteczką homoatomową zbudowaną z dwóch atomów niemetalu. Różnica elektroujemności jest równa 0, zatem występuje w niej wiązanie kowalencyjne niespolaryzowane (atomowe). b) HBr jest cząsteczką heteroatomową złożoną z dwóch atomów niemetali. EH = 2,1, EBr = 2,8, różnica elektroujemności wynosi 2,8 – 2,1 = 0,7, zatem występuje w niej wiązanie kowalencyjne spolaryzowane. c) K2O składa się z metalu i niemetalu. EK = 0,9, EO = 3,5, różnica elektroujemności wynosi 3,5 – 0,9 = 2,6, zatem w K2O występuje wiązanie jonowe. Kiedy omówić krotność wiązań? W pierwszej kolejności należy pomóc uczniom w rozpoznaniu rodzaju wiązania między atomami, zaś w drugiej – ustalić z nimi krotność wiązania oraz obecność wolnych par elektronowych, czyli zapisać wzór elektronowy. Po wprowadzeniu reguł dubletu oraz oktetu elektronowego (jako reguł najbliższego helowca z trwałą konfiguracją elektronową; reguły te obowiązują pierwiastki chemiczne do fosforu) trzeba umiejętnie dobrać przykłady substancji. Związki binarne pozwolą uniknąć kłopotliwych pytań (uczniowie nie znają jeszcze kwasów, które dopiero będą omawiane później). J. Kulawik, T. Kulawik, M. Litwin, Chemia Nowej Ery, podręcznik dla klasy 7, Warszawa 2017, s. 113 i 114. Jak dobrać przykłady cząsteczek z wiązaniami wielokrotnymi? Przykłady cząsteczek z wiązaniem kowalencyjnym niespolaryzowanym o różnej krotności to: – cząsteczka wodoru (w której atomy uzyskują dublet elektronowy i tworzą wiązanie pojedyncze) i cząsteczka fluorowca (w której atomy uzyskują oktet elektronowy i tworzą wiązanie pojedyncze; dodatkowo jest to okazja do wprowadzenia pojęcia wolnych par elektronowych), – cząsteczka siarki (w której atomy uzyskują oktet elektronowy i tworzą wiązanie podwójne; tu również pojawi się pojęcie wolnych par elektronowych), – cząsteczka azotu (w której atomy uzyskują oktet elektronowy i tworzą wiązanie potrójne, także i tu pojawi się kwestia wolnych par elektronowych). Po omówieniu podstaw można przejść do podania przykładów cząsteczek z kilkoma wiązaniami kowalencyjnymi spolaryzowanymi o różnej krotności: – z jednym wiązaniem pojedynczym – np. HCl lub HBr, – z dwoma wiązaniami pojedynczymi – np. H2O lub SCl2, – z trzema wiązaniami pojedynczymi – np. NH3 lub NF3, – z wiązaniami podwójnymi – CO2 (wyjaśnienie tego przypadku można połączyć ze wskazaniem przesunięcia wspólnej pary elektronowej jako elementu charakterystycznego wiązań spolaryzowanych; następstwem tego przesunięcia jest pojawienie się w cząsteczce biegunów dodatniego i ujemnego, a zatem powstanie dipola). J. Kulawik, T. Kulawik, M. Litwin, Chemia Nowej Ery, podręcznik dla klasy 7, Warszawa 2017, s. 130. Czego nie robić? Zdecydowanie należy unikać zapisywania wzorów kreskowych związków chemicznych uznanych za jonowe, takich jak np. Na2O, CaO, gdyż związki jonowe nie występują w postaci cząsteczek. Oczywiście dotyczy to również soli. W postaci wzorów kreskowych można przedstawiać cząsteczki związków kowalencyjnych, pamiętając jednak o tym, by unikać cząsteczek z wiązaniami powstającymi w mechanizmie donorowo-akceptorowym (wiązania koordynacyjne obecne w SO2, SO3, NO, NO2, CO), gdyż nie uwzględniono ich w podstawie programowej dla szkoły podstawowej. Rozwiązanie - Do udrażniania instalacji sanitarnych stosuje się preparaty zawierające wodorotlenek sodu. Oblicz objętość preparatu, którą należy odmierzyć, wiedząc, że jego gęstość wynosi 1,22 g/cm3, a masa powinna wynosić 6,1 dag. Rozwiązanie - Spirytus salicylowy stosowany do dezynfekcji jest sprzedawany w opakowaniach o pojemności 150 cm3. Jego gęstość wynosi 0,87 g/ jego masę. Rozwiązanie - Uczeń wsypał dwie łyżeczki cukru do szklanki z herbatą i uzyskał 0,25dm3 roztworu o masie 260g. Oblicz gęstość roztworu herbaty z cukrem. Podaj wynik w g/cm3. Rozwiązanie - W zlewce znajdują się trzy niemieszające się ciecze o gęstościach: I - 0,785 g/cm3, II - 1, 023 g/cm3 i III 1,480 g/cm3. Wpisz na liniach wartości gęstości odpowiadające poszczególnym cieczom. Rozwiązanie - Poniższe fotografie przedstawiają świeczkę parafinową w wodzie i w oleju. Na podstawie położenia świeczki napisz, która substancja - woda czy olej - ma większą gęstość. Rozwiązanie - Zbadaj właściwości dwóch dowolnie przez siebie wybranych substancji często spotykanych w gospodarstwie domowym(oprócz soli kuchennej i cukru). Określ właściwości tych substancji. Rozwiązanie - Na podstawie opisów rozpoznaj substancje. Napisz ich nazwy. Rozwiązanie - Uzupełnij schemat, wpisując odpowiednie przykłady właściwości substancji. Rozwiązanie - Uzupełnij tabelę, wpisując określenia właściwości wymienionych substancji. Rozwiązanie - Uzupełnij zdania. Ciało fizyczne to Rozwiązanie - Jest substancją stałą o żółtej barwie i charakterystycznym zapachu. Nie rozpuszcza się w wodzie. Jest niemetalem. Co to za substancja? Rozwiązanie - Jeden karat to jednostka stosowana do określenia masy kamieni szlachetnych wynosi 0,2g. Oblicz ile gramów ważył diament o masie 560 karatów. Rozwiązanie - Dlaczego niektóre metale ulegają niszczeniu? Rozwiązanie - Uzupełnij tabelkę: nazwa szkła laboratoryjnego: zastosowanie w laboratorium: Rozwiązanie - Ogrzewając 43,3 g tlenku rtęci otrzymano 2,24 dm3 tlenu oraz rtęć. Oblicz masę tlenu wiedząc że gęstość tlenu wynosi 1,43g/dm3. Rozwiązanie - Oblicz masę płytki z aluminium o objętości 200cm3 jeśli gęstość aluminium wynosi 2,7 g/cm3 Rozwiązanie - Oblicz masę sześcianu o krawędzi 2cm, wykonanego z miedzi, wiedząc, że gęstość miedzi wynosi 8,93 g/cm3. Rozwiązanie - Do cylindra miarowego nalano 100cm3 wody i wrzucono kulkę wykonaną z cyny o masie 43,28g. Stwierdzono, że objętość wody w cylindrze miarowym zwiększyła się do 106cm3. Oblicz gęstość cyny. Rozwiązanie - Gorzka czekolada zawiera 32% tłuszczu. Oblicz, ile gramów tłuszczu dostarcza się organizmowi po zjedzeniu 1/4 tabliczki czekolady o masie 200g. Rzowiązanie - Sztabka metalowa ma masę jej metalu wynosi 8g/cm3. Rozwiązanie - Przyporządkuj właściwości fizyczne do podanych substancji: tlenu, wody i siarki.

wiązania chemiczne przykłady i rozwiązania